Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aging Cell ; 18(1): e12882, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30468013

RESUMO

Increased activation of the major pro-inflammatory NF-κB pathway leads to numerous age-related diseases, including chronic liver disease (CLD). Rapamycin, an inhibitor of mTOR, extends lifespan and healthspan, potentially via suppression of inflammaging, a process which is partially dependent on NF-κB signalling. However, it is unknown if rapamycin has beneficial effects in the context of compromised NF-κB signalling, such as that which occurs in several age-related chronic diseases. In this study, we investigated whether rapamycin could ameliorate age-associated phenotypes in a mouse model of genetically enhanced NF-κB activity (nfκb1-/- ) characterized by low-grade chronic inflammation, accelerated aging and CLD. We found that, despite showing no beneficial effects in lifespan and inflammaging, rapamycin reduced frailty and improved long-term memory, neuromuscular coordination and tissue architecture. Importantly, markers of cellular senescence, a known driver of age-related pathology, were alleviated in rapamycin-fed animals. Our results indicate that, in conditions of genetically enhanced NF-κB, rapamycin delays aging phenotypes and improves healthspan uncoupled from its role as a suppressor of inflammation.


Assuntos
Inflamação/patologia , Longevidade/fisiologia , NF-kappa B/deficiência , Sirolimo/farmacologia , Animais , Biomarcadores/metabolismo , Longevidade/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo
2.
EMBO J ; 35(7): 724-42, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26848154

RESUMO

Cell senescence is an important tumour suppressor mechanism and driver of ageing. Both functions are dependent on the development of the senescent phenotype, which involves an overproduction of pro-inflammatory and pro-oxidant signals. However, the exact mechanisms regulating these phenotypes remain poorly understood. Here, we show the critical role of mitochondria in cellular senescence. In multiple models of senescence, absence of mitochondria reduced a spectrum of senescence effectors and phenotypes while preserving ATP production via enhanced glycolysis. Global transcriptomic analysis by RNA sequencing revealed that a vast number of senescent-associated changes are dependent on mitochondria, particularly the pro-inflammatory phenotype. Mechanistically, we show that the ATM, Akt and mTORC1 phosphorylation cascade integrates signals from the DNA damage response (DDR) towards PGC-1ß-dependent mitochondrial biogenesis, contributing to aROS-mediated activation of the DDR and cell cycle arrest. Finally, we demonstrate that the reduction in mitochondrial content in vivo, by either mTORC1 inhibition or PGC-1ß deletion, prevents senescence in the ageing mouse liver. Our results suggest that mitochondria are a candidate target for interventions to reduce the deleterious impact of senescence in ageing tissues.


Assuntos
Envelhecimento/fisiologia , Mitocôndrias/fisiologia , Animais , Linhagem Celular , Humanos , Camundongos , Modelos Biológicos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...